Torwards an Adaptive Middleware for
Opportunistic Environments:
a Mobile Agent Approach

Vinicius Pinheiro (=
) -
Fabio Kon .
IME - Intituto de Alfredo Goldman USP - Universidada
Matematica e Estatistica de S&0 Paulo

Department of Computer Science
University of Sao Paulo

Urbana Champaign — IL
December 2009 — MGC 2009

O o[[[|
c c S L gg‘:aTP':gé)l\fcm EM J Re .
SOFTWARE LIVRE ‘r | :’?: | e

FOSS Competence Center

Opportunistic Grids: usage of idle time of non-
dedicated resources

High heterogeneity of resources
Failure rate 1s higher than 1n dedicated environments
Resources " fail” all the time

InteGrade: Grid middleware for opportunistic grids

Usage of 1dle power from personal computers
Architecture: federation of clusters

Sequential, parametric, BSP, and MPI applications

Cluster 1
Cluster
Manager
GRM AR
Rescures Resource
Node Provider
and User Node
e " Resource | | ... = eosmens ﬂ
. LRM | EL‘:E"E" | LRM | | ASCT
LRM
Cluster Cluster 3
_____________ Manager | = —
eemi ‘am (| | ¢ e
| GRM | AR
! el Y e S
Resources Resource *\\x
Provider Provider Resource Resource
Node and User Node Provider Provider
i LRM LEM ASCT Mode and User Node

MAG: Mobile Agents for Grid Computing

Built on top of the InteGrade architecture

JADE: agent platform to provide agent
communication and life cycle monitoring

Mobile agents as a good alternative to build fault-
tolerance mechanisms

Cooperation, autonomy, platform independent,
reactivity, and mobility

Replication, checkpointing, and retrying for
sequential and parametric Java applications

MAG

= MAG: Mobile Agents for Grid Computing
= Layers of the InteGrade/MAG middleware

Fault-tolerance 1s essential, specially when
executing long-running parallel applications

Failure of a single node require restarting the
application from the beggining

Replication and checkpointing can be used as fault-
tolerance mechanisms

MAG supports retrying, replication, and
checkpointing of applications

Weak points

These mechanisms operate solely

All replicas perform checkpoint periodically

If the most advanced replica crashes, its checkpoint
will not be reused by other replicas

These mechanisms do not perform any automatic
adjustments to adapt themselves to changes in
resource availability

Ex.: nodes leaving and joining the grid

Recovery: when a replica crashes, it resumes its execution from its

last particular checkpoint
] execution progress in %

checkpointing()

getCheckpoint()

- <

- g I

StableStorage

Replicas periodically send information about their
execution progress and only the most advanced
replica 1s authorized to perform checkpointing

The application programmer must manually invoke a
superclass method which increases a counter

When the replica hits a checkpoint, it sends only the
value of the counter

The Stable Storage component compares this value
to the ones sent by other replicas

If this value 1s the hightest, it sends a message to the
replica requesting the checkpoint

Recovery: when a replica crashes, it resume its execution on another

machine from the checkpoint of the most advanced replica
[l | execution progress in %

A

\d K
. _. checkpointing()
% =B LS
. o @
LY Q. - I -
Y O = =
S). =@ { o
4. Yy 4,
getCheckpoint()
-

T |

StableStorage

Nodes are leaving and joining the grid constantly

Slow replicas are migrated to improve performance

Feedback system model

submission

>

ASCT

Fault tolerance mechanisms

create/replace replicas

A
+/- number
of replicas changes on the
number of
available resources,
initial number informations about Y
i 1 execution progress
i i »| Adjustments | Environment
measures
A

failures (network
partitioning,
shutdown of machines,

nodes leaving/joining
the grid, etc

How slow replicas are replaced?

StableStorage also checks for slow replicas when
comparing replica progression counters

If the ratio between a replica counter and the highest
counter 1s below a predefined value, the
StableStorage sends a message to the replica
requesting its migration to another node

After the migration, the replica resumes its execution
from the checkpoint of the most advanced replica

12

Focus: execution time

Stmulation parameters: failure rate, MTBF (mean
time between failures), downtime and number of
replicas

Cluster environment with 100 heterogenous machines
connected by a 100Mbps network

Task model (GridSim Toolkit):

604,8 x 10° MI (millions of instructions)
Binary size of 320KB and ouput size file of 15,6KB

At least 105 hours of execution
13

Stmulation scenario built to represent a very
inhospitable environment to distributed processing

Ex: Student laboratories with machines being regularly
turned off and rebooted

Fixed 60 minutes as the MTBF

24 failures per day distributed 1n 100 machines
Downtime (average): 30 minutes

We ran the simulation scenario 40 times with different
number of replicas: 2, 4, 8, and 16

Compute the average execution time and 95%
confidence interval (t-Student distribution)

14

Potencial advantage of 480
adopting unified
checkpoint happens
independently of the
number of replicas used

01d nodel
Unified Checkpoint

350

Jae

298

In all cases: execution 260

times at least 34% lower % |5

Maximum difference with
16 replicas: 47% lower

1808

a8

Average execution tine {in hours}

Amount of time saved

varies between 95 and 2 4 8 16
107 hours Hunber of replicas

15

Focus: execution time and CPU/Memory
consumption

We submitted a Java application that calculates the
aproximate value of P1 1n an iterative process

CPU intensive
Could take days of execution (1t depends on the input)

Many 1nvocations to the checkpoint mechanism

16 replicas with all the fault-tolerance mechanisms
activated

16

Experiments

= Execution environment: 17 machines connected by a local Fast
Ethernet network (100Mbps)

Machine Processor RAM/Swap OS/Arch Kernel Version Distribution
villa AMD 2.0 GHz | 1 GB/1.5 GB | Linuxi68 | 2.6.22-14-generic | Ubuntu 7.10 (gutsy)
ilhabela | AMD 2.0 GHz | 1 GB/1.5 GB Linux i686 | 2.6.22.14-generic | Ubuntu 7.10 (gutsy)
taubate | AMD 2.0 GHz | 3 GB/768 MB | Linux x86_64 | 2.6.22.14-generic | Ubuntu 7.10 (gusty)
giga Intel 3.0 GHz 2 GB/2 GB Linux i686 | 2.6.22.14-generic Debian 5.0 (lenny)
orlandia | AMD 2.0 GHz | 1 GB/640 MB | Linux i686 | 2.6.22.14-generic | Ubuntu 7.10 (gutsy)
motuca | AMD 2.2 GHz | 1.5 GB/2 GB | Linux x86_64 2.6.10 Debian 5.0 (lenny)
mercurio | AMD 1.4 GHz | 1 GB/0 GB Linux i686 2.6.27-9-generic | Ubuntu 8.10 (intrepid)
venus AMD 14 GHz | 1 GB/0 GB Linux i686 2.6.27-9-generic | Ubuntu 8.10 (intrepid)
terra AMD 14 GHz | 1 GB/1.5 GB | Linux i686 2.6.27-9-generic | Ubuntu 8.10 (intrepid)
marte AMD 2.0 GHz | 1 GB/2 GB Linux i686 2.6.27-9-generic | Ubuntu 8.10 (intrepid)
jupiter AMD 14 GHz | 1 GB/0 GB Linux i686 2.6.27-9-generic | Ubuntu 8.10 (intrepid)
saturno | AMD 1.4 GHz | 1 GB/1.2 GB | Linux i686 2.6.27-9-generic | Ubuntu 8.10 (intrepid)
urano AMD 14 GHz | 1 GB/0 GB Linux i686 2.6.27-9-generic | Ubuntu 8.10 (intrepid)
netuno AMD 14 GHz | 1 GB/0 GB Linux 1686 2.6.27-9-generic | Ubuntu 8.10 (intrepid)
plutao AMD 14 GHz | 1 GB/0 GB Linux i686 2.6.27-9-generic | Ubuntu 8.10 (intrepid)
hubble AMD 14 GHz | 1 GB/0 GB Linux i686 2.6.27-9-generic | Ubuntu 8.10 (intrepid)
callisto AMD 1.5 GHz | 1 GB/0 GB Linux 1686 2.6.27-7-generic | Ubuntu 8.10 (intrepid)

Application execution time

without Unified Checkpoint: 63 hours and 30 minutes
whit Unified Checkpoint: 40 hours and 42 minutes

Middleware memory consumption (Jconsole tool)

without Unified Checkpoint: 17

(avg), 30MB (peak)

with Unified Checkpoint: 20MB (avg), 34MB (peak)
Middleware CPU consumption (orlandia machine)
with or without Unified Checkpoint: 0,8%

18

Unstable and highly heterogeneous environments like
opportunistic grids can benefit from dynamic fault-tolerance
mechanisms to improve the execution of sequential and
parametric applications.

Checkpointing and replication can work together to reduce
resource consumption and improve application execution, and
we showed that the Unified Checkpoint 1s a viable solution.

Currently, we are investigating other adaptive mechanisms:

increase/decrease number of replicas according to failure
rate, free resources, and resource competition;

changing the checkpointing interval according to failure
rate and checkpoint size.

19

vinicius@ime.usp.br
gold@ime.usp.br
kon@ime.usp.br

For more information, please visit the project site:

ccsl.me.usp.br/integrade

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

