
Torwards an Adaptive Middleware for 
Opportunistic Environments:

a Mobile Agent Approach

Vinicius Pinheiro
Fabio Kon

Alfredo Goldman

Department of Computer Science
University of São Paulo

Urbana Champaign – IL
December 2009 – MGC 2009



2

Introduction
 Opportunistic Grids: usage of idle time of non-

dedicated resources
 High heterogeneity of resources
 Failure rate is higher than in dedicated environments
 Resources ‶fail″ all the time

 InteGrade: Grid middleware for opportunistic grids
 Usage of idle power from personal computers
 Architecture: federation of clusters
 Sequential, parametric, BSP, and MPI applications



3

Integrade Architecture



4

MAG

 MAG: Mobile Agents for Grid Computing
 Built on top of the InteGrade architecture
 JADE: agent platform to provide agent 

communication and life cycle monitoring
 Mobile agents as a good alternative to build fault-

tolerance mechanisms
 Cooperation, autonomy, platform independent, 

reactivity, and mobility
 Replication, checkpointing, and retrying for 

sequential and parametric Java applications



5

MAG

 MAG: Mobile Agents for Grid Computing
 Layers of the InteGrade/MAG middleware



6

Motivation

 Fault-tolerance is essential, specially when 
executing long-running parallel applications

 Failure of a single node require restarting the 
application from the beggining

 Replication and checkpointing can be used as fault-
tolerance mechanisms



7

Fault tolerance on MAG

 MAG supports retrying, replication, and 
checkpointing of applications

 Weak points
 These mechanisms operate solely

 All replicas perform checkpoint periodically
 If the most advanced replica crashes, its checkpoint 

will not be reused by other replicas
 These mechanisms do not perform any automatic 

adjustments to adapt themselves to changes in 
resource availability

 Ex.: nodes leaving and joining the grid



8

Fault tolerance on MAG
 Recovery: when a replica crashes, it resumes its execution from its 

last particular checkpoint



9

Unified Checkpoint

 Replicas periodically send information about their 
execution progress and only the most advanced 
replica is authorized to perform checkpointing

 The application programmer must manually invoke a 
superclass method which increases a counter

 When the replica hits a checkpoint, it sends only the 
value of the counter

 The Stable Storage component compares this value 
to the ones sent by other replicas

 If this value is the hightest, it sends a message to the 
replica requesting the checkpoint



10

Unified Checkpoint
 Recovery: when a replica crashes, it resume its execution on another 

machine from the checkpoint of the most advanced replica



11

Replica Replacement
 Nodes are leaving and joining the grid constantly

 Slow replicas are migrated to improve performance

 Feedback system model



12

Replica Replacement

 How slow replicas are replaced?

 StableStorage also checks for slow replicas when 
comparing replica progression counters

 If the ratio between a replica counter and the highest 
counter is below a predefined value, the 
StableStorage sends a message to the replica 
requesting its migration to another node

 After the migration, the replica resumes its execution 
from the checkpoint of the most advanced replica



13

Simulation

 Focus: execution time
 Simulation parameters: failure rate, MTBF (mean 

time between failures), downtime and number of 
replicas

 Cluster environment with 100 heterogenous machines 
connected by a 100Mbps network

 Task model (GridSim Toolkit):
 604,8 x 106 MI (millions of instructions)
 Binary size of 320KB and ouput size file of 15,6KB
 At least 105 hours of execution



14

Simulation
 Simulation scenario built to represent a very 

inhospitable environment to distributed processing
 Ex: Student laboratories with machines being regularly 

turned off and rebooted
 Fixed 60 minutes as the MTBF

 24 failures per day distributed in 100 machines
 Downtime (average): 30 minutes

 We ran the simulation scenario 40 times with different 
number of replicas: 2, 4, 8, and 16

 Compute the average execution time and 95% 
confidence interval (t-Student distribution) 



15

Simulation

 Potencial advantage of 
adopting unified 
checkpoint happens 
independently of the 
number of replicas used

 In all cases: execution 
times at least 34% lower

 Maximum difference with 
16 replicas: 47% lower

 Amount of time saved 
varies between 95 and 
107 hours



16

Experiments
 Focus: execution time and CPU/Memory 

consumption
 We submitted a Java application that calculates the 

aproximate value of Pi in an iterative process
 CPU intensive
 Could take days of execution (it depends on the input)
 Many invocations to the checkpoint mechanism

 16 replicas with all the fault-tolerance mechanisms 
activated



17

Experiments
 Execution environment: 17 machines connected by a local Fast 

Ethernet network (100Mbps)



18

Simulation
 Application execution time

 without Unified Checkpoint: 63 hours and 30 minutes
 whit Unified Checkpoint: 40 hours and 42 minutes

 Middleware memory consumption (Jconsole tool)
 without Unified Checkpoint: 17MB (avg), 30MB (peak)
 with Unified Checkpoint: 20MB (avg), 34MB (peak)

 Middleware CPU consumption (orlandia machine)
 with or without Unified Checkpoint: 0,8%



19

Conclusions and ongoing work
 Unstable and highly heterogeneous environments like 

opportunistic grids can benefit from dynamic fault-tolerance 
mechanisms to improve the execution of sequential and 
parametric applications.

 Checkpointing and replication can work together to reduce 
resource consumption and improve application execution, and 
we showed that the Unified Checkpoint is a viable solution.

 Currently, we are investigating other adaptive mechanisms:

 increase/decrease number of replicas according to failure 
rate, free resources, and resource competition;

 changing the checkpointing interval according to failure 
rate and checkpoint size.



20

Questions?

vinicius@ime.usp.br
gold@ime.usp.br
kon@ime.usp.br

For more information, please visit the project site:

ccsl.ime.usp.br/integrade


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

