
Torwards an Adaptive Middleware for 
Opportunistic Environments:

a Mobile Agent Approach

Vinicius Pinheiro
Fabio Kon

Alfredo Goldman

Department of Computer Science
University of São Paulo

Urbana Champaign – IL
December 2009 – MGC 2009



2

Introduction
 Opportunistic Grids: usage of idle time of non-

dedicated resources
 High heterogeneity of resources
 Failure rate is higher than in dedicated environments
 Resources ‶fail″ all the time

 InteGrade: Grid middleware for opportunistic grids
 Usage of idle power from personal computers
 Architecture: federation of clusters
 Sequential, parametric, BSP, and MPI applications



3

Integrade Architecture



4

MAG

 MAG: Mobile Agents for Grid Computing
 Built on top of the InteGrade architecture
 JADE: agent platform to provide agent 

communication and life cycle monitoring
 Mobile agents as a good alternative to build fault-

tolerance mechanisms
 Cooperation, autonomy, platform independent, 

reactivity, and mobility
 Replication, checkpointing, and retrying for 

sequential and parametric Java applications



5

MAG

 MAG: Mobile Agents for Grid Computing
 Layers of the InteGrade/MAG middleware



6

Motivation

 Fault-tolerance is essential, specially when 
executing long-running parallel applications

 Failure of a single node require restarting the 
application from the beggining

 Replication and checkpointing can be used as fault-
tolerance mechanisms



7

Fault tolerance on MAG

 MAG supports retrying, replication, and 
checkpointing of applications

 Weak points
 These mechanisms operate solely

 All replicas perform checkpoint periodically
 If the most advanced replica crashes, its checkpoint 

will not be reused by other replicas
 These mechanisms do not perform any automatic 

adjustments to adapt themselves to changes in 
resource availability

 Ex.: nodes leaving and joining the grid



8

Fault tolerance on MAG
 Recovery: when a replica crashes, it resumes its execution from its 

last particular checkpoint



9

Unified Checkpoint

 Replicas periodically send information about their 
execution progress and only the most advanced 
replica is authorized to perform checkpointing

 The application programmer must manually invoke a 
superclass method which increases a counter

 When the replica hits a checkpoint, it sends only the 
value of the counter

 The Stable Storage component compares this value 
to the ones sent by other replicas

 If this value is the hightest, it sends a message to the 
replica requesting the checkpoint



10

Unified Checkpoint
 Recovery: when a replica crashes, it resume its execution on another 

machine from the checkpoint of the most advanced replica



11

Replica Replacement
 Nodes are leaving and joining the grid constantly

 Slow replicas are migrated to improve performance

 Feedback system model



12

Replica Replacement

 How slow replicas are replaced?

 StableStorage also checks for slow replicas when 
comparing replica progression counters

 If the ratio between a replica counter and the highest 
counter is below a predefined value, the 
StableStorage sends a message to the replica 
requesting its migration to another node

 After the migration, the replica resumes its execution 
from the checkpoint of the most advanced replica



13

Simulation

 Focus: execution time
 Simulation parameters: failure rate, MTBF (mean 

time between failures), downtime and number of 
replicas

 Cluster environment with 100 heterogenous machines 
connected by a 100Mbps network

 Task model (GridSim Toolkit):
 604,8 x 106 MI (millions of instructions)
 Binary size of 320KB and ouput size file of 15,6KB
 At least 105 hours of execution



14

Simulation
 Simulation scenario built to represent a very 

inhospitable environment to distributed processing
 Ex: Student laboratories with machines being regularly 

turned off and rebooted
 Fixed 60 minutes as the MTBF

 24 failures per day distributed in 100 machines
 Downtime (average): 30 minutes

 We ran the simulation scenario 40 times with different 
number of replicas: 2, 4, 8, and 16

 Compute the average execution time and 95% 
confidence interval (t-Student distribution) 



15

Simulation

 Potencial advantage of 
adopting unified 
checkpoint happens 
independently of the 
number of replicas used

 In all cases: execution 
times at least 34% lower

 Maximum difference with 
16 replicas: 47% lower

 Amount of time saved 
varies between 95 and 
107 hours



16

Experiments
 Focus: execution time and CPU/Memory 

consumption
 We submitted a Java application that calculates the 

aproximate value of Pi in an iterative process
 CPU intensive
 Could take days of execution (it depends on the input)
 Many invocations to the checkpoint mechanism

 16 replicas with all the fault-tolerance mechanisms 
activated



17

Experiments
 Execution environment: 17 machines connected by a local Fast 

Ethernet network (100Mbps)



18

Simulation
 Application execution time

 without Unified Checkpoint: 63 hours and 30 minutes
 whit Unified Checkpoint: 40 hours and 42 minutes

 Middleware memory consumption (Jconsole tool)
 without Unified Checkpoint: 17MB (avg), 30MB (peak)
 with Unified Checkpoint: 20MB (avg), 34MB (peak)

 Middleware CPU consumption (orlandia machine)
 with or without Unified Checkpoint: 0,8%



19

Conclusions and ongoing work
 Unstable and highly heterogeneous environments like 

opportunistic grids can benefit from dynamic fault-tolerance 
mechanisms to improve the execution of sequential and 
parametric applications.

 Checkpointing and replication can work together to reduce 
resource consumption and improve application execution, and 
we showed that the Unified Checkpoint is a viable solution.

 Currently, we are investigating other adaptive mechanisms:

 increase/decrease number of replicas according to failure 
rate, free resources, and resource competition;

 changing the checkpointing interval according to failure 
rate and checkpoint size.



20

Questions?

vinicius@ime.usp.br
gold@ime.usp.br
kon@ime.usp.br

For more information, please visit the project site:

ccsl.ime.usp.br/integrade


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

